
The influence of is,tropic strengthening (according to Taylor) on the strain diagram 
of a polycrystal is exhibited in Fig. 3, where curves 1-4 correspond to curves i, 2, 5, 6 
in Fig. 2. The dashed lines correspond to the value of the quantity b/G = 0.02 (b is the 
is,tropic strengthening factor, and G is the shear modulus), and the dash--dot line to b/G = 
0.I0. 

It follows from the dependences presented that the mean grain dimension exerts the 
fundamental influence on the behavior of a polycrystalline aggregate consisting of crys- 
tallites of different dimensions. The dependence of the strain diagram on the nature of 
the grain dimension distribution turns out to be negligible. 
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PARAMETRIC RESONANCE IN A STRATIFIED FLUID 

V. A. Vladimirov UDC 532.5.51 

Parametric resonance is one of the widespread types of instability of mechanical sys- 
tems. A somewhat broader class of phenomena is called parametrically excited oscillations. 
The mathematical definition of this class of oscillations is ordinarily given [i] for systems 
whose equations of motion reduce to ordinary differential equations in the time. Parametric 
oscillations are related to the periodic dependence of the coefficients (parameters) of 
these equations on the time. Such oscillations are distinct from forced oscillations for 
which the explicit time dependence is contained only additively, in the form of periodic 
forces, in the equations. The Mathieu equation and its generalization are a standard ex- 
ample of parametric oscillation equations. The experimental work of Faraday [2], in which 
the oscillations of a free fluid surface in a vessel were studied, was the first investiga- 
tion of parametric oscillations. However, mainly applications to solid and elastic bodies 
[i, 3, 4] were developed later. The exception is the problem of the oscillations of a free 
fluid surface in a vertically oscillating vessel. It has been shown [5-7] that in a linear 
approximation, the displacement of a free surface reduces to a Mathieu equation, and reso- 
nance frequencies therefore exist for which the surface turns out to be unstable. Taking 
account of the viscosity in this problem is presented in [8]. Only in the past decade have 
investigations been started on the parametric instabilities of more complicated flows. 
Parametric resonance in convection problems was studied in [9, i0]. The stability of Rossby 
waves was investigated in [11-14]. The papers [15, 16] are devoted to the instability of 
internal waves in a stratified fluid. A number of considerations on the possibility of the 
growth of fine-scale perturbations in the internal wave background is presented in [15]. 
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A theoretical investigation of the parametric instability of a plane internal wave in the 
Boussinesq approximation is contained in [16]. It is shown that a finite-amplitude wave 
can be unstable. In the small amplitude limit the parametric instability goes over into 
known [17] resonance interaction of waves. 

In this paper the parametric resonance is studied in a stratified fluid. In the cases 
of a vertically oscillating vessel with a fluid and a horizontal plane-parallel flow, in- 
stability conditions are obtained. It is shown that an instability of the same kind holds 
in internal waves. Here the idea of the similarity of the physical conditions for the fluid 
motion in the oscillating vessel and in the wave is important. The distinctions are that 
oscillations in the wave are not solid-state and their frequencies are not given arbitrarily. 
If a long internal wave is considered, then locally (for shortwave perturbations) the con- 
ditions turn out to be close to a solid-state oscillating fluid. The type of internal wave 
instability studied is omitted from consideration in [16]. A study of the mechanisms by 
which destruction of the internal waves can occur is of great interest in connection with 
oceanology applications [15-18]. This latter reduces to the origination of zones in the 
wave, in which the density grows upward. Let us also note the interesting hypothesis [ii, 
12, 15, 16] which is that the parametric instability of wave motions can be a mechanism of 
the "loss of predictability" of the flow and the generation of turbulence. 

i. Let us consider a rectangular vessel filled with an ideal incompressible fluid. 
At the initial instant (t = 0) the fluid occupies the volume 0 < x < a, 0 < y < b, 0 < z < 
c. The fluid density is po = Ae -By (A > 0; 8 are constants). The homogeneous gravity field 
has only a y-component (0, -g, 0). The buoyancy frequency (Brent-Wyaisyal) is N 2 = Bg = 
const. The vessel moves in the y direction at the velocity Y(t)~dY/dt, where Y(t) is a 
periodic function (finite-amplitude oscillations). The impenetrability conditions are 
satisfied on the vessel boundaries. The fluid state of rest relative to the vessel is the 
solution of the motion equations. Its stability must be investigated. 

Let us go over a coordinate system coupled to the vessel 

= z,  g = g - -  Y( t ) ,  E =  z, F= t. 

In these coordinates the equations of fluid motion have the same form as in the initial 
coordinates, except that the gravity field g has been replaced by GEg+ Y. The linearized 
system of perturbation equations has the form 

poUt = - - P x ,  poWt = - - P z ~  (1 .1)  

P o V t = - - p v - - p C ,  Pt + p~v = O, ux  + vy + w ~  O, 

where the bar above the x, y, z, t has been omitted. The x, y, z-components of the velocity 
perturbations are denoted by u, v, w and p, p are the density and pressure perturbations. 

! 

The subscripts denote partial derivatives, and po~dpo/dy. The substitution ~ = P/Po, r = 
0/0o reduces (i.I) to a system of equations with coefficients independent of x, y, z 

v~ = - - o ~  _ ~ - -  Gr, r~ - -  ~v  = O, u~ + vy + w~ = O, 

that allows separation of variables. The equation 

Drtt  ~- ~G(r~x @ r~z ) = 0, ( t .  3) 

for r follows from (!.2), where D = A -- 83/~y and A is the three-dimensional Laplace opera- 
tor. The substitution r -- ~0~y/2 transfers (1.3) into 

(A - -  ~V4)~tt @ ~G(gxx @ %=) = 0. (1 .4)  

The eigenfunction of the problem is 

where (kl, k=, k3)~(nl/a, no/b, 
components calculated from (1.2) 
from (1.4), (1.5) 

(p = R ( t ) k ~ 3 c o s  k ~  s in k~G cos k3z, 

n3/c) and nl, no, ns are arbitrary integers. 
and (1.5) satisfy the boundary conditions. 

2 where B-=(k~ + k3)l(k 2 + B=I4); k2=k~ + k~ + k~. 

(1.5) 

The u, v, w 
There follows 

(1.6) 
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Because of the periodicity of Y(t), equation (1.6) is a Hill equation [19]. For Y = 
C cos mt it reduces to the Mathieu equation 

+ B(N 2 - -  ~ C  cos ~t)R = O, 

whose canonical form is 

R,~ + (a - -  2q cos 2T)R = 0, (1 .7 )  

where T = ~t/2; a = 4BNa/~a; q = 2BC. The stability of the solutions of (1.7) has been 
studied in detail in [19, 20]. The unstable domains in the a, q plane (for a > 0) are 
"tongues" emerging from the points a = m 2, m = i, 2, 3, ... For samll amplitudes C of the 
vessel oscillations the solutions of (1.7) are unstable in narrow zones around the points 

= 2NB1/2/m. ( 1 . 8 )  

Such an instability is called parametric resonance [I, 3, 4], and the number m is the order 
of the resonance. Since B < i, for the order of resonance m to exist we must have m < 
2N/m. For given vessel dimensions a, b, c and the buoyancy frequency N a four-parameter 
countable set (in nx, nz, n3, m) of vessel oscillation frequencies ~ (1.8) exists for which 
resonance holds. In all cases, the instability will be understood, here and below, as the 
exponential growth of the solutions as t ->~. 

The preceding results have been obtained for equilibrium density stratification N2EBg > 
0. At the same time, it follows from (1.7) that upon compliance with the conditions 

V'TBqlN2I/e < CBIBI < a/2 § 2BIN21/e ~ (1 .9 )  

the vessel oscillations make the state stable with the growth of the density upward (N 2 < 
0). If the oscillation amplitude C is small, then the right side in (1.9) is always 
satisfied. The left side yields the condition 

~C > (2g/l~lB) 1/~. (1.10) 

The stabilization property under discussion for the nonequilibrium state is an analog of 
the known result for a pendulum for which the upper position becomes stable during oscilla- 
tions of the point of suspension [21]. Still closer analogs are the stabilization of the 
Rayleigh--Taylor [22] and convection [23] instabilities by oscillations. However, in con- 
trast to these cases, stabilization of an ideal nonequilibrium stratified fluid has not 
been achieved successfully. Spoilage of the inequality as B->O corresponds to this in (i.i0). 

2 Small values of B are achieved either for k~ + k3§ or for k2 -~o, Because of the limited 
size of the vessel, the first case be eliminated. Hence, short waves in the vertical di- 
rection are dangerous. Stabilization can possibly be achieved here by introducing viscosity. 

Another interesting result of (1.7) is the flow instability in the absence of a gravity 
field g ffi 0. The instability condition (approximate), [20] is 

IC! > (2I~1) -1 

Such an instability can turn out to be important for predicting the behavior of a stratified 
fluid under weightless conditions. 

2. Taking account of fluid viscosity results in replacement of the operator 3/3t in 
front of the velocity components in (i.i) by 3/3t -- vA. Under the condition of constancy 
of the kinematic viscosity coefficient v = const, we obtain the following equation in place 
of (I~4) : 

The solution of the problem with the adhesion conditions on the vessel boundaries satisfied 
is quite complex and can be considered as a generalization [8, i0]. Let us consider an 
infinite vessel. After separation of variables 

we obtain the equation 

h + ~h  4- B(N 2 + ~ f )R  = 0, ( 2 . 1 )  

which is a generalization of (1.6). This equation is a Hill equation (or a Mathieu equa- 
tion for Y = C cos mr) with friction. The form of the friction coefficient is unusual: 
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= v ( k '  - -  ~ ' / 4  - -  i k , ~ ) .  
o |  

For instance, both damping and growth can be obtained from (2.1) for N 2 + ~Y = 0 for dif- 
ferent k. Such a behavior of R(t) is related to the unboundedness of the selected solu- 
tions of (i.i) for any fixed t. In the Boussinesq approximation (see below), the solutions 
are bounded, and X = vk 2, which always corresponds to damping. 

3. A direct extension of the problems considered is the problem of the vertical os- 
cillations of a horizontal plane-parallel ideal incompressible stratified fluid stream. 
The stream is along the x axis, and the velocity is U = U(y). Retaining the notation from 
Sec. i, we obtain a system of equations in the linear perturbations: 

po(Lu + U'v) = - -Px ,  poLv = - - p y -  pG, poLw = - -Pz ,  ( 3 . 1 )  
t 

L p + p o v = O ,  u x + v ~ + w ~ = O ,  

where L~a/at + Ua/ax. From (3.1) there follows (A + fla/ay)L=0 + flG(0xx + 0zz) -- 2(U'LPx)y = 
0. Investigation of the stability of the solutions of this equation is extremely compli- 
cated. However, and equation of the type (1.3) is again obtained for perturbations inde- 
pendent of the coordinate x: 

(O~/Oz ~ --}- O~/Oy 2 -}- ~O/Oy)p n + ~Gpz z = O, 

which  i s  s o l v e d  by t h e  s u b s t i t u t i o n  p = ~e-gy/2 w i t h  s u b s e q u e n t  s e p a r a t i o n  of  v a r i a b l e s .  The 
r e s u l t s  o b t a i n e d  a r e  t h e  same as  i n  S e t s .  1 and 2,  w i t h  t h e  s o l e  d i f f e r e n c e  t h a t  k~ = O. 

4.  I t  was shown i n  t h e  p r e v i o u s  e x a m p l e s  t h a t  t h e  o s c i l l a t i o n s  o f  a volume of  s t r a t i -  
f i e d  f l u i d  a s  a w h o l e  can  r e s u l t  i n  i n s t a b i l i t y  by t h e  p a r a m e t r i c  r e s o n a n c e  mechan i sm.  I t  
i s  n a t u r a l  t o  e x p e c t  t h a t  b o t h  n o n - s o l i d - s t a t e  ( d i f f e r e n t i a l )  o s c i l l a t i o n s  o f  a medium, and 
p a r t i c u l a r l y  i n t e r n a l  waves  ( s e e  t h e  I n t r o d u c t i o n )  p o s s e s s  s i m i l a r  p r o p e r t i e s .  The ma in  
difficulties in investigating the stability of internal motions in a stratified fluid are 
the complexity of the original equations, and the absence of sufficiently simple particular 
solutions. The outcome is to go over to approximations in either the solutions or in the 
equations directly. An approximation in the solution is understood to be that the funda- 
mental wave motion being investigated for stability is given approximately (for instance, 
in the form of a finite number of terms in the amplitude series). Mathematically, this 
operation has the meaning of replacing the coefficients in the equations being investigated 
for stability by their approximate (analytically more simple) values. Examples of direct 
simplification of the equations of motion are the Boussinesq approximation [17], or the 
S-plane approximation [ii, 13, 24]. The questionof the mathematical correctness of such a 
consideration is extremely complex. At the same time, the scientific and practical values 
of the problem is a justification of activity at the "physical level of strictness." Two 
examples of approximations in the solutions and in the equations for the problem of internal 
wave stability are elucidated below. 

An ideal incompressible stratified fluid filling all of space is given. The homogene- 
ous gravity field --g is directed along the y axis. The unperturbed fluid density Po = 
Ae -~y, the buoyancy frequency is N 2 = ~g = const (the notation is the same as in See. !)o 
Let us examine the problem of stability of an internal wave of a particular form, where we 
limit ourselves to linear expressions in the amplitude in giving it. The form of such a 
wave is given by the representation 

u = O, v = Y t x ,  t ) =  BY~Or, 

where u and v are the x and y components of the velocity. The function Y(x, t) is a travel- 
ing or standing wave of the form cos(kx -- Nt) or cos kx cos Nt, etc. The frequency of the 
wave agrees with the buoyancy frequency N. By analogy with Sec. i, we perform the coordi- 
nate transformation 

x .... x , ~ = u - r ( ~ ,  t), ~=z, 7 = t .  

which corresponds to going over to coordinates "oscillating" together with the fluid. Thus, 
the density in the internal wave is independent of the time p = 0o(Y). We introduce ~ = 
v -- Yt for the vertical component v so that the ground state is rest u = 0, 9 = 0. The 
linearized system of equations, the analog of (i.i), has the form 

~o~t: --;)~'-~ )~.~,, ,,,w,: --;,:, (4.1) 
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i~,,(vl-i-)'~t~') '--;<, .... l<~-= Y.), 

Pl ~-i)~(~'--]'~u) (i ~f: ,--Y~L-" ~b-!-zvz=O. 

The bar is omitted above the notation. Let us examine a perturbation of particular form: 

For r = p/p o 

r~l :- ( -V~ < I'll}; .... ~. (4.2) 

This equation is the analog of (1.6). For Y = ~(x) cos Nt, Eq. (4.2) reduces to the 
Mathieu equation in which x plays the part of a parameter. Since the forcing frequency 
equals the fundamental, a second resonance occurs [3, 20], and the wave is unstable even 
for small amplitudes ~. For the traveling wave Y = Ccos(kx -- Nt) and (4.2) also reduces 
to a Mathieu equation but only at the points sin kx = 0. Instability hence also follows 
in this case. Let us yet note that terms with Y enter the system (4.1) differently. The 
derivative is Yx ~ C/k, where C is the amplitude and I the wavelength. If this ratio is 
considered small and is neglected, then (4.1) reduces to (i.i) with the sole difference that 
the quantity Ytt depends on the coordinate x. For shortwave perturbations in x this system 
of equations agrees with (i.i) in a first approximation. 

Now, let us consider the approach of approximations in the equations. The Boussinesq 
approximation [17] is a known simplification of the equations of motion of a stratified 
fluid 

du/dt . . . .  VF/~- -  ~g, dO/Jr -- ~ := O, d i v u  == O, ( 4 . 3 )  

where u is the velocity vector, eE(p - ~)/~; p is the total density which differs little 
from ~ = const; B = ~(Y)~-P~(Y)/0. For B >0 the system (4.3) has exact solutions, plane 
waves: 

(u, v, O, p) = (-- l /k ,  l ,  i~l~, --ol/k2)Ceir (4.4) 

where ~ = • C = const; ~ = kx + ly + mr. It is shown in [16] that these solu- 
tions can be unstable. At the same time, it turns out that part of terms of the equations 
of motion that were discarded in obtaining (4.3) can also yield a parametric instability. 
To prove this assertion it is sufficient to note that the use of (4.3) in the problem of 
the oscillating vessel (see Sec. i) does not generally result in instability. It is clear 
that such an approach is incorrect: Small discarded terms of the equations yield an effect 
which cumulates in a resonance manner. To maintain the instability discussed in Sec. 1 in 
the equations, it is necessary to return the term e du/dt discarded earlier, into (4.3). 
This operation is equivalent to goving over to the Boussinesq approximation in the coordi- 
nate system coupled to the vessel. Afterwards, the linearized system of equations of the 
stability problem follows from (4.3): 

= o(g  + f ) ,  = = -pJ  o,  - = o ,  

u=§ Fwz=O. 
A c om pa r i son  w i t h  t he  sys t em ( 1 . l )  shows t h a t  ( 4 . 4 )  i s  a s i m p l i f i e d  v a r i a t i o n .  I t  f o l l o w s  
from (4.4) that 

Aatt ~- ~G(=x= q- azz) = O, (4.5) 

where aEO/B; GEg+ Y. Furthermore, the problem is solved by separation of variables (see 
Sec. i). For ~ = const Eq. (4.5) is a simplification of (1.4). Taking account of viscosity 
results in the appearance of a dissipation term in the most simple form in (4.5) 

A(~t  - -  ~A~t) + ~G(a= + ~ )  = O. 

Exactly the same, taking account of the above-mentioned term of the equations results in the 
appearance of an additional (compared with [16]) instability in the solution (4.4). Let us 
write the equation of motion in a coordinate system with x axis along the wave vector k, and 
the y axis along the velocity vector in the wave. The velocity and density fields (4.4) 
take the form 

(U, V, O ) =  (0, i ,  i~l~)Ce ~ = - ' o  , 

*There are two Eqs. (4.4) in the Russian original --Publisher. 

(4.4)* 
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where ~=Ncos @; ~ is the angle between the x axis and the horizontal plane, and 
k 2 + 12. The linearized system of equations of the stability problem has the form 

L u = - - p ~ - - g O s i n ~ ,  L v - i - V ~ u  =--py--O(gcos~ + Vt), 
Lw = - - P z ,  u~ + v v + W z  = O, LO + @~u - -~v  = O, 

where L~/~t + V~/~y. Let us consider perturbations of a particular form 

It follows from (4.6) 

v = v ( x ,  t ) ,  O = O(z ,  t ) ,  p = p ( x ,  t ) ,  u = w = O. 

(4.6) 

Oft + (N ~ cos ~ r + ~ V  t cos @0 = O. 

Since the frequency of variation V equals ~=Ncos ~, second resonance occurs for V = 
C r Let us emphasize that the results of this section are illustrative in na- 
ture and not proofs: 

In conclusion, we note the following. The problem of investigating the stability in 
a linear approximation of the equilibrium of an ideal stratified fluid in a vertically 
oscillating vessel reduces to solving the Mathieu equation (1.7). For an equilibrium den- 
sity stratification, an instability of parametric resonance type is possible. Stabilization 
by oscillations of the nonequilibrium stratification is possible only for part of the spec- 
trum. 

Perturbations of a particular kind exist in a horizontal plane-parallel stream of 
stratified fluid subjected to vertical oscillations, for which the same results are valid 
as for the oscillating vessel. 

An approximate investigation of the stability of internal waves in an infinite strati- 
fied fluid shows that an instability of the parametric resonance type holds that is similar 
in type to the instability in an oscillating vessel. 

Let us formulate the following as a development of the general representation about 
instability mechanisms in a stratified fluid. If the fluid oscillations are such that the 
mass flow rate has a component normal to the constant density surfaces, then exponential 
growth of the linear perturbations is possible by the mechanism of parametric resonance. 
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